
Machine Learning In Search Quality At Vandex

Russian Search Market

Source: LiveInternet.ru, 2005-2009

A Yandex Overview

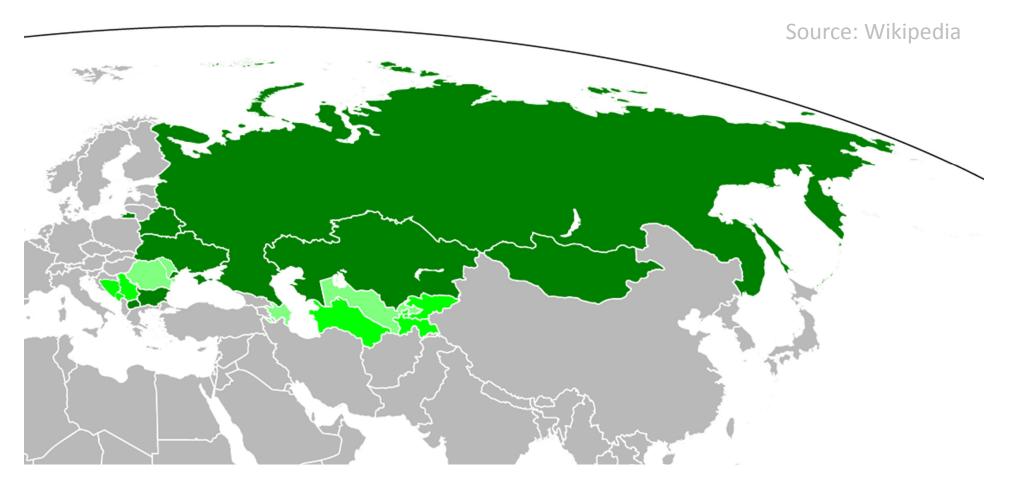
1997

Yandex.ru was launched

Nº7

Search engine in the world * (# of queries)

150 mln


Search Queries a Day

Offices >Moscow >4 Offices in Russia >3 Offices in Ukraine >Palo Alto (CA, USA)

* Source: Comscore 2009

Variety of Markets

15 countries with cyrillic alphabet

77 regions in Russia

Variety of Markets

> Different culture, standard of living, average income for example, Moscow, Magadan, Saratov

> Large semi-autonomous ethnic groups Tatar, Chechen, Bashkir

> Neighboring bilingual markets Ukraine, Kazakhstan, Belarus

Geo-specific queries

Relevant result sets vary

across all regions and countries

[wedding cake]

[gas prices]

[mobile phone repair]

[ПИЦЦА] Guess what it is?

pFound

A Probabilistic Measure of User Satisfaction

Probability of User Satisfaction

Optimization goal at Yandex since 2007

- > pFound Probability of an answer to be FOUND
- > pBreak Probability of abandonment at each position (BREAK)
- > pRel Probability of user satisfaction at a given position (RELevance)

$$pFound = \sum_{r=1}^{n} (1 - pBreak)^{r-1} pRel_r \prod_{i=1}^{r-1} (1 - pRel_i)$$

Geo-Specific Ranking

An initial approach

Ranking feature e.g.: "user's region and document region coincide"

An initial approach

query — query + user's region

Problems

Hard to perfect single ranking

- > Very poor local sites in some regions
- > Some features (e.g. links) missing
- Countries
 (high-level regions)
 are very specific

degradation

Cache hit

> Twice as much queries

Alternatives In Regionalization

Separated local indices	VS	Unified index with geo-coded pages
One query	VS	Two queries: original and modified (e.g. +city name)
Query-based local intent detection	VS	Results-based local intent detection
Single ranking function	VS	Co-ranking and re-ranking of local results
Train one formula on a single pool	VS	Train many formulas on local pools

Why use MLR?

Machine Learning as a Conveyer

- > Each region requires its ranking Very labor-intensive to construct
- > Lots of ranking features are deployed monthly MLR allows faster updates
- > Some query classes require specific ranking Music, shopping, etc

MatrixNet

A Learning to Rank Method

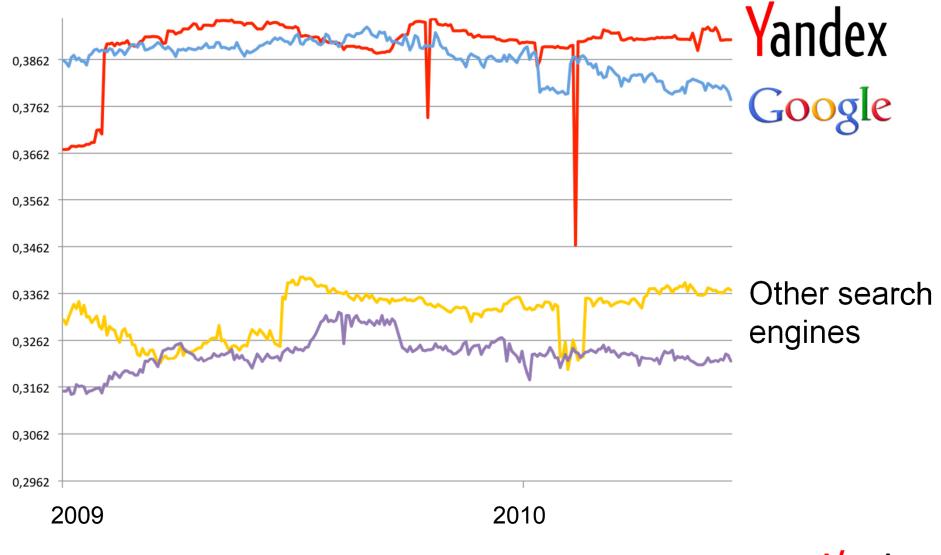

MatrixNet

A Learning Method

- > boosting based on decision trees We use oblivious trees (i.e. "matrices")
- > optimize for pFound
- > solve regression tasks
- > train classifiers

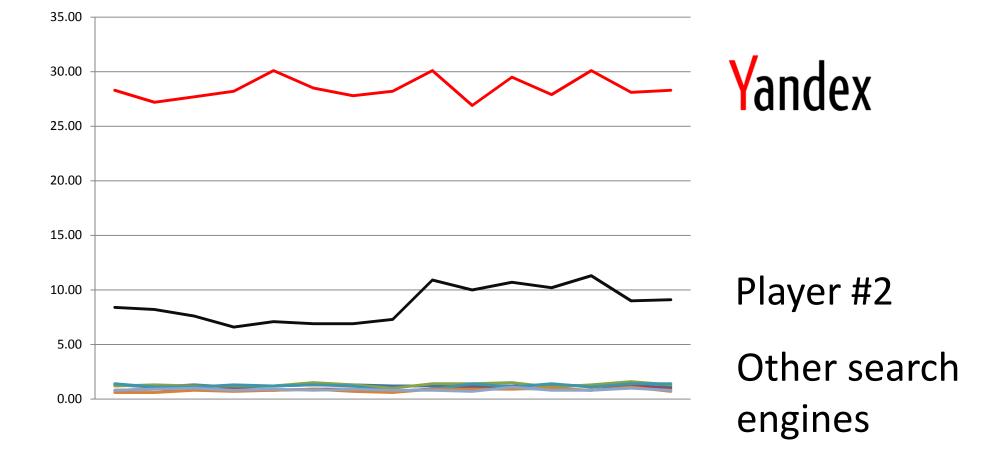
MLR: complication of ranking formulas

MLR: complication of ranking formulas


A Sequence of More and More Complex Rankers

- > pruning with the Static Rank (static features)
- > use of simple dynamic features (such as BM25 etc)
- > complex formula that uses all the features available
- > potentially up to a million of matrices/trees for the very top documents

See also **Cambazoglu**, 2010, Early Exit Optimizations for Additive Machine Learned Ranking Systems


Geo-Dependent Queries: pfound

Geo-Dependent Queries

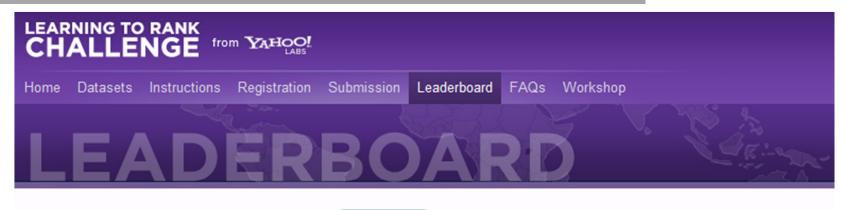
Source: Analyze This.ru, 2005-2009

Lessons

MLR is the only key to regional search: it provides us the possibility of tuning many geo-specific models at the same time

Challenges

- > Complexity of the models is increasing rapidly Don't fit into memory!
- > MLR in its current setting does not fit well to time-specific queries Features of the fresh content are very sparse and temporal
- > Opacity of results of the MLR The back side of Machine Learning
- > Number of features grows faster than the number of judgments Hard to train ranking
- > Learning from clicks and user behavior is hard Tens of Gb of data per a day!



Yandex and IR

Participation and Support

Yandex MLR at IR Contests

Scores on the test sets: Track 1 Track 2

Rank	Team Name	ERR Score	NDCG Score
1	MN-U	0.463476	0.7863
2	arizona	0.463169	0.7876
3	Joker	0.463113	0.7887
4	ULG-PG	0.461686	0.7819
5	VeryGoodSignal	0.461632	0.7849
6	ya	0.461492	0.7828
7	WashU in Saint Louis	0.461184	0.7838
8	catonakeyboardinspace	0.461146	0.7833
9	CLTeam	0.460897	0.7815
10	yareg	0.460519	0.7782

N**21**

MatrixNet at Yahoo Challenge: #1, 3, 10 (Track 2), also BagBoo, AG

Support of Russian IR

Schools and Conferences

>RuSSIR, since 2007, – Russian Summer School for Information Retrieval

>**ROMIP**, since 2003, – Russian Information Retrieval Evaluation Workshop: 7 teams, 2 tracks in 2003; 20 teams, 11 tracks in 2009

>Yandex School of Data Analysis, since 2007 – 2 years master program

Grants and Online Contests

>IMAT (Internet Mathematics) 2005, 2007 – Yandex Research Grants; 9 data sets

>IMAT 2009 – Learning To Rank (in a modern setup: test set is 10000 queries and ~100000 judgments, no raw data)

>IMAT 2010 – Road Traffic Prediction

http://company.yandex.ru/academic/grant/datasets_description.xml http://imat2009.yandex.ru/datasets http://www.romip.ru

Andex

We are hiring!

